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1. Introduction and summary

The past five years witnessed impressive amount of work and progress in the understanding

of N = 4 superconformal Yang Mills theory with gauge group SU(N) in the large-N limit.

The most relevant results include the increasingly detailed correspondence between

states in this theory with string states on AdS5 × S5, the technical improvements in the

evaluation of the anomalous dimension of operators which led to the discovery of quantum

integrability, some unexpected relations with high energy sectors of quantum chromody-

namics. We cannot possibly quote the pertinent vast literature and we refer the reader

to the papers [1 – 3] for introduction to the subject and to the original literature. Each of

these outstanding results were obtained in the large-N ’t Hooft limit, in several sectors of

the theory, at several orders in loop expansion, then suggesting the possibility of a complete

understanding of the theory.

It seems important both for a more complete understanding of the N = 4 Super

Yang Mills SU(N) theory at large-N and for further tests of the AdS/CFT Maldacena

conjecture to evaluate the eigenvalues of the dilatation operator for all states product of a

small number of fields and for sequences made of an arbitrary number of fields.

To this goal, an essential progress was obtained by expressing the dilatation operator in

a way that translates the evaluation of anomalous conformal dimension of states into a di-

agonalization problem in finite dimensional spaces, then avoiding the previous cumbersome

evaluation by Feynman graphs.
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We shall only work in the sector of states given by products of the six real scalar

matrix fields φj of the theory . An operator containing the product of n matrix fields like

tr (φ1φ2 · · · φn) has conformal dimension △0 = n, at tree level. We refer this number as

the main quantum number of the operator or state. In this work we limit ourselves to

the exact analytic evaluation of the one loop contribution △2, to the conformal dimension

for these single trace states in leading order in the large-N ’t Hooft limit. Another good

quantum number is parity. One may define a parity operator P which inverts the order

of the matrix fields inside a single trace, P tr (φ1φ2 · · · φn) = tr (φnφn−1 · · ·φ1). Since the

Hamiltonian corresponding to the Dilatation operator commutes with the parity operator,

it is possible and useful to have eigenvectors with definite parity.

One may consider a set of states obtained by permuting the positions of the complex

fields Z, W , Y , later defined in eq. (4.1), inside a trace tr

(

ZaW bY c
)

. The states of this set

may be regarded as basis vectors of a linear vector space invariant under the action of the

one-loop Dilatation operator. We refer to this vector space as the sector tr

(

ZaW bY c
)

. The

dimension of the vector space increases rapidly as the main quantum number △0 = a+b+c

increases. For instance the sector tr

(

Z2W 2
)

has only 2 independent states, both of positive

parity, whereas the sector tr

(

Z3W 2Y 2
)

has 30 independent states. To evaluate eigenvalues

and eigenvectors of the Dilatation operator in a given sector it is very useful to use basis

vectors with definite parity obtained by sum and differences of pairs of the previous basis

vectors, then splitting large matrices into two smaller ones.

This evaluations will be called direct diagonalization of the Dilatation operator. It is

the simplest procedure provided the main quantum number △0 = a+b+c is a small integer.

We provide a summary, in appendix A, of all eigenstates of the dilatation operator for low

quantum number 4 ≤ △0 ≤ 7. This represents a useful information for the understanding

of the theory, for checking evaluations we perform for arbitrary value of △0 and for any

comparison with energy of states in string theory.

Possibly the most important result of our paper is the evaluation of a vast number

of exact sequences of eigenstates of the dilatation operator, which appear as eqs. (C.1)

and (C.2). To our knowledge, these sequences are not known in the literature. They

have the same eigenvalues of the well known sequences for two impurities, reproduced in

eqs. (D.1) and (D.2), which may be said to belong to the sector tr (Znφaφb) of the theory.

Our sequences are valid for every sector of the form tr

(

ZaW bY c
)

with arbitrary values

for the (non-negative) integer exponents. For instance, in the sector tr

(

Zn−2W 2Y
)

, we

provide very explicit expressions of exact sequences of eigenstates in eqs. (D.3), (D.4).

Our method is rather different from the powerful methods (superconformal algebra,

integrability and Bethe ansatz) used in extensive evaluations already performed with the

same goal. We define an auxiliary Hamiltonian, which might be called pertinent to a

nearest-neighbor exchange model where the number of flavours of the matrix fields φj is

unlimited and in every configuration of the fields the flavours are all distinct.

Configurations are sums of permutations and the Hamiltonian changes permutations

into permutations. The Hamiltonian belongs to the group algebra and, not surprisingly,

the analysis of this auxiliary model leads the study of the irreducible representations of

the permutation group Sn, its Young projectors, its group algebra. At the end we recover
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information pertinent N = 4 Super Yang Mills theory by trivial replacements in the results.

Our method may be used to discover new sequences of eigenstates of the dilatation

operator, belonging to irreducible representations different from the one we studied. These

would have different eigenvalues. In this case, we cannot anticipate if the analytic evaluation

can be carried to the end.

The outline of the paper is the following: in section 2 we define our auxiliary model and

its analysis which leads us to the evaluation of eigenvalues and eigenvector for one element

of the group algebra of the symmetric group Sn in several irreducible representations. Every

representation will be denoted by the sequence of integer numbers counting the number of

boxes in horizontal rows of the Young tableaux. The eigenvalues of the Hamiltonian in the

auxiliary model include the eigenvalues of the Dilatation operator of the Super Yang Mills

theory. For a number of irreducible representations we collected them in appendix B.

The method to find the eigenvectors pertinent to specific representations is described

in section 3 and in appendix C where we obtain an explicit solution for the representation

(n − 1, 1). This is the easiest non trivial representation and contains the sequences we

mentioned before, the well known ones and the new ones. Section 4 and appendix D

contain the easiest replacements for the general sequences.

2. Cayley graphs

It was shown by Minahan and Zarembo [4] that the action of the dilatation operator on

single-trace states of the product of n + 1 scalar matrix-fields, at one loop order in the

large-N ’t Hooft limit, may be replaced by the matrix

Γ =
λ

16π2

n+1
∑

l=1

(Kl,l+1 + 2 − 2Pl,l+1) , λ = g2
YMN (2.1)

The two operators Kl,l+1, Pl,l+1 act only on the pair of fields in the positions (l, l+1) inside

the single-trace string of n + 1 scalar fields.

The operator Kl,l+1, called a trace operator, is

Kl,l+1 tr

(

φα1
· · · φαl−1

φαl
φαl+1

φαl+2
· · · φαn+1

)

= δαl , αl+1

6
∑

k=1

tr

(

φα1
· · ·φαl−1

φkφkφαl+2
· · ·φαn+1

)

It yields zero if the pair of matrix fields at positions l and l + 1 have different flavour.

The operator Pl,l+1 exchanges the flavour of the matrix fields at positions l and l + 1

irrespective of the flavours being equal or different

Pl,l+1 tr

(

φα1
· · ·φαl−1

φαl
φαl+1

φαl+2
· · ·φαn+1

)

= tr

(

φα1
· · ·φαl−1

φαl+1
φαl

φαl+2
· · ·φαn+1

)

Of course the trace operator may be neglected if the dilatation operator acts on configura-

tions tr

(

φα1
φα2

· · ·φαn+1

)

where the flavours αj of the matrix fields are all different. This is

possible only for short chains (n+1 ≤ 6) and leads us to the definition of a auxiliary model.
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Our auxiliary model is defined by the generalized dilatation operator

Γ =
λ

8π2
L , L =

n+1
∑

l=1

(Il,l+1 − Pl,l+1) = I − A , λ = g2
YMN (2.2)

acting on operators tr

(

φα1
φα2

· · ·φαn+1

)

where the flavours αj of the matrix fields are all

different, that is {α1, α2, . . . , αn+1} is a permutation of the set of integers {1, 2, . . . , n +

1}. Because of the cyclic property of trace, the number of states is n! . One may fix

the position of one flavour, let us choose the first, and consider the set of independent

states tr

(

φ1φα2
. . . φαn+1

)

where the sequence {α2, α3, . . . , αn+1} is a permutation of the

permutation group Sn acting on the sequence {2, 3, . . . , n + 1}.
Next we proceed to evaluate eigenvalues and eigenstates for the auxiliary model. It

might seem that such spectrum would provide the correct spectrum of the dilatation oper-

ator in superconformal Yang Mills theory only for short chains and just in the sector where

all flavours are different. We suggest in the last section that a simple replacement rule

allows us to recover from the analysis of the auxiliary model the corresponding information

for super Yang Mills in the sector tr

(

ZaW bY c
)

for any choice of integers a, b, c.

One may consider the n! states tr

(

φ1φα2
. . . φαn+1

)

as a basis in a vector space Vn!.

With the above convention of fixing flavour one in first place, the form of the operator

A =
∑n+1

l=1 Pl,l+1 , writing the permutations as cycles, is

A =
n+1
∑

l=1

Pl,l+1 = (2, 3, . . . , n, n + 1) + (2, 3) + · · · (n, n + 1) + (n + 1, n, . . . , 3, 2) (2.3)

The first permutation is the inverse of the last one, whereas each transposition coincides

with its inverse.1

The operator A is represented as a real symmetric matrix in the space Vn! and it is

the adjacency matrix of the graph G(V,E) associated to the matrix. The set of vertices

1Warning about conventions. Some care is necessary when we translate results from the theory of

representations of the symmetric group to the present generalized Heisenberg model on a chain. We have

defined a one-to-one correspondence between states with △0 = n+1 and elements of the permutation group

Sn:

tr [φ1φα2
· · ·φα

n+1
] ∼

„

2 3 . . . n + 1

α2 α3 . . . αn+1

«

(2.4)

However products of exchange operators Pl,l+1 act in reverse order of the usual conventions on products of

permutations. An example will illustrate it:

P4,5P3,4tr [φ1φ5φ4φ3φ2] = P4,5tr [φ1φ5φ3φ4φ2] = tr [φ1φ5φ3φ2φ4]

It corresponds to:
„

1 2 3 4 5

1 5 4 3 2

«

(34)(45) =

„

1 2 3 4 5

1 5 3 2 4

«

As a general rule, we use the theory of irreducible representations of Sn, the projectors related to Young

tableaux, as in appendix B and C, with the generally used conventions on products of group elements.

Often we consider linear combinations of group elements, that is elements in the group ring. The results

may be translated into linear combinations of traces of products of matrix fields by first taking the inverse

of each permutation, then applying the correspondence (2.4).
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is the set of the n! independent states tr

(

φ1φα2
. . . φαn+1

)

, a link connects vertex vi with

vertex vk if one of the n + 1 permutations π in the sum in eq. (2.3), is such that vk = πvi.

The operator L given in eq. (2.2) is the Laplacian of the graph. Since every vertex in

the graph has the same degree n + 1, the spectrum of the adjacency matrix A is trivially

related to the spectrum of the Laplacian matrix L. The eigenvalues of L, here called △2,

provide the one loop contribution to the anomalous dimension

△ = △0 + λ
8π2 △2 , △0 = n + 1 .

Let us recall [5] that a graph G(V,E) where the set of vertices is the set of elements

of a group, and the set of edges is a subset of the previous set, provided it is closed under

taking the inverse, is a Cayley graph. Then the graph we are discussing in this section is

the Cayley graph on the group of permutations Sn with the set of n + 1 connections listed

on the right side of eq. (2.3). The evaluation of the spectrum of the adjacency matrix of

Cayley graphs even for large graphs, is greatly facilitated by its symmetries.

We recall that for any n there exist a very easy representation of the permutation

group Sn of degree n! . It is obtained by considering the elements g ∈ Sn both as basis

vectors as well as operators in the vector space spanned by the basis vectors. Each g ∈ Sn

is represented by a matrix with only one entry equal to one and the remaining entries equal

to zero in each row and in each column. This representation is sometimes called the regular

representation.

The real symmetric matrix A , of order n! in eq. (2.3) is the sum of (n + 1) real

symmetric matrices which are the regular representation of n−1 transpositions and 2 long

cycles in Sn. It contains n + 1 entries equal to one in each row and in each column.

Any set of matrices which are the regular representation of a set of elements g ∈
Sn, allow a simultaneous block decomposition, where the matrices in the blocks are the

irreducible representations of the elements g ∈ Sn. A irreducible representation of degree f

occurs f times in this decomposition [6], then the spectrum of A is given by the eigenvalues

of A in the irreducible representation of degree f with multiplicity f (times the multiplicity

of the eigenvalue in the irreducible).

Since the regular representation is a matrix of order n!, the size increases too rapidly

to allow a direct evaluation of eigenvalues and eigenvectors of the matrix A beyond the

smallest values of n. But every information on the spectrum is recovered by the analy-

sis of the irreducible representations occurring in the block decomposition of the regular

representation.

The evaluation of the eigenvalues does not need writing the irreducible representation

for the n − 1 transpositions and the 2 cycles occurring in eq. (2.3). Indeed from the

knowledge of the characters of all classes of elements of Sn in a given representation of

degree f , one obtains the character of the matrices A, A2, . . . , Af then the characteristic

equation for the matrix A then its eigenvalues. However we found easier to profit from the

explicit irreducible representations tabulated for the generators of the permutation group

Sn explicitly listed [7] up to some value of n.

△0 = 4. By this method we evaluate the 6 eigenvalues of A for n = 3: { λ = 4 singlet,

λ = 0 with multiplicity 3, λ = −2 with multiplicity 2 }. They translate respectively to
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λ 5
√

5 1 −1 −
√

5 −5

△2 0 5 −
√

5 4 6 5 +
√

5 10

multiplicity 1 6 5 5 6 1

Table 1: Eigenvalues of the states tr (φ1φα2
φα3

φα4
φα5

), △0 = 5 has multiplicity= 24. The spec-

trum of the Laplacian has the symmetry △2 → 10 −△2

the eigenvalues of the Laplacian operator: {△2 = 0 singlet, △2 = 4 with multiplicity 3,

△2 = 6 with multiplicity 2 }. The representation of dimension 6 is partitioned into the

irreducible representations 6 = 1 + 1 + 22. The first singlet, corresponding to the identity

representation is the totally symmetric eigenstate, the second singlet corresponds to the

alternate representation, finally the 2-dimensional irreducible representation provides λ = 0

and λ = −2.

In a more symmetric fashion, the 3 eigenstates with λ = 0 may be chosen as

u1 = tr (φ1φ2φ3φ4 − φ1φ4φ3φ2) ,

u2 = tr (φ1φ2φ4φ3 − φ1φ3φ4φ2) ,

u3 = tr (φ1φ4φ2φ3 − φ1φ3φ2φ4) (2.5)

The 2 eigenstates with λ = −2 may be chosen as

u4 = tr (φ1φ2φ3φ4 − φ1φ2φ4φ3 + φ1φ4φ3φ2 − φ1φ3φ4φ2) ,

u5 = tr (φ1φ2φ4φ3 − φ1φ3φ2φ4 + φ1φ3φ4φ2 − φ1φ4φ2φ3) (2.6)

△0 = 5. The permutation group S4 has 5 irreducible representations: two of degree 1, one

2-dimensional and two of degree 3. Correspondingly the matrix A, of order 24 decomposes

into blocks, 24 = 1 + 1 + 22 + 2 × 32.

The eigenvalues of the two 1-dimensional representations are λ = ±5. The eigenvalues

associated to the other three irreducible representations are exhibited in the appendix B.

Eigenvalues and multiplicities are collected in table 1. The spectrum of A is symmetric

with respect to the origin because all the 5 permutations occurring in eq. (2.3) may be

decomposed in a odd number of transpositions, then the graph with 24 vertices each of

degree 5 is bipartite.

We omit listing the eigenvectors in the degenerate subspaces as they may be chosen in

several ways.

△0 = 6. The permutation group S5 has 7 irreducible representations: two of degree

1, two of degree 4, two of degree 5, one 6-dimensional. Correspondingly the matrix A, of

order 120 decomposes into blocks 120 = 1 + 1 + 2 × 42 + 2 × 52 + 62.

The eigenvalues of the two 1-dimensional representations are λ = 6, λ = −2. The

eigenvalues associated to the other five irreducible representations are exhibited in the

appendix B. Eigenvalues and multiplicities are collected in table 2.

△0 = 7. The permutation group S6 has 11 irreducible representations: two of degree

1, four of degree 5, two of degree 9, two of degree 10, one 16-dimensional. Correspondingly

the matrix A, of order 720 decomposes into blocks 720 = 1+1+4×52+2×92+2×102+162.
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λ 6 4 1 +
√

5 −1 +
√

13 1 0 1 −
√

5 −2 −4 −1 −
√

13

△2 0 2 5 −
√

5 7 −
√

13 5 6 5 +
√

5 8 10 7 +
√

13

multiplicity 1 10 9 5 32 15 9 25 9 5

Table 2: Eigenvalues of the states tr (φ1φα2
φα3

φα4
φα5

φα6
) , △0 = 6 has multiplicity= 120.

λ 7 7 − 8 sin2(π/7) 5 7 − y1 7 − z1 3 7 − 8 sin2(2π/7) 2 7 − z2 1

△2 0 8 sin2(π/7) 2 y1 z1 4 8 sin2(2π/7) 5 z2 6

multiplicity 1 15 14 21 21 70 15 28 21 119

λ −7 + 8 sin2(3π/7) 0 7 − 8 sin2(3π/7) −1 7 − y2 −2 −7 + 8 sin2(2π/7)

△2 14 − 8 sin2(3π/7) 7 8 sin2(3π/7) 8 y2 9 14 − 8 sin2(2π/7)

multiplicity 15 40 15 119 21 28 15

λ −3 7 − y3 7 − z3 −5 −7 + 8 sin2(π/7) −7

△2 10 y3 z3 12 14 − 8 sin2(π/7) 14

multiplicity 70 21 21 14 15 1

Table 3: Eigenvalues of the states tr (φα1
φα2

φα3
φα4

φα5
φα6

φα7
), △0 = 7 has multiplicity = 720.

zj are the roots of the cubic E3−20E2 +116E−200 = 0, yj are the roots of the cubic E3−22E2 +

144E − 248 = 0. The spectrum is symmetric with respect △2 = 7.

The eigenvalues of the two 1-dimensional representations are λ = ±7. The eigenvalues

associated to the other nine irreducible representations are exhibited in the appendix B.

Eigenvalues and multiplicities are collected in table 3.

Appendix B collects all the irreducible representations for A and its eigenvalues up to

△0 = 7.

3. The sequences

For any irreducible representation, of degree f , one may find a suitable set of f basis vectors

and represent the operator A in eq. (2.3) as matrix of order f , then finding the eigenstates

of the dilatation operator. In this section we show the method for a simple example of

fixed order. In appendix C the method is generalized to the much more interesting case of

the easiest representations for Sn then obtaining sequences of eigenvectors for any n. One

finds in the literature [6] the method to evaluate the basis vectors useful for any irreducible

representation: they are the left cosets obtained by multiplying each g ∈ Sn times the

Young projector Y = PQ associated to the given irreducible representation.

We illustrate the method with an example. Let us consider the permutation group

S4 and the irreducible representation associated to the partition (3, 1) which has degree

f = 3. The Young tableaux in the figure 1 is associated to the Young projector Y = PQ,

where P is the totally symmetric projector P = e + (12) + (13) + (23) + (123) + (132) and

– 7 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
0

1 2 3

4

Figure 1: A standard Young tableau for the representation (3, 1) of S4.

Q is the antisymmetric projector Q = e − (14).

Three basis vectors are determined by the products g · Y , with g ∈ S4. The evaluation is

shortened by a couple of simple remarks. Each g ∈ S4 is written in one of the four sets aj ,

j = 1, 2, 3, 4

a1 = (14) · {e, (12), (13), (23), (123), (132)} ,

a2 = (24) · {e, (12), (13), (23), (123), (132)} ,

a3 = (34) · {e, (12), (13), (23), (123), (132)} ,

a4 = e · {e, (12), (13), (23), (123), (132)}

Furthermore if g ∈ S3 ∈ S4, g ·PQ = PQ. Then the 24 products g ·PQ for g ∈ S4 fall into

four cosets

v1 = (14) · PQ ,

v2 = (24) · PQ ,

v3 = (34) · PQ ,

v4 = PQ (3.1)

It is also clear that v1 + v2 + v3 + v4 = 0 because that sum is the product of the totally

symmetric projector in S4 times Q. Then a basis of 3 independent (although not orthogo-

nal) vectors for the irreducible representation corresponding to the partition (3, 1) may be

chosen as three among the four vj. Let us express v3 = −(v1 + v2 + v4).

The action of the operator A = (12) + (23) + (34) + (1234) + (4321) on the three basis

vectors vj is

Av1 = 2v1 + 2v2 + v4

Av2 = 2v1 + v2 + 2v3 = −v2 − 2v4

Av4 = v1 + 2v3 + 2v4 = −v1 − 2v2

If u = α1v1 + α2v2 + α4v4 is eigenvector of A , Au = λu, one easily finds:

λ = 1 , u1 = v1 + v4 ,

λ =
√

5 , u2 =
3 +

√
5

4
v1 + v2 +

1 −
√

5

4
v4 ,

λ = −
√

5 , u3 =
3 −

√
5

4
v1 + v2 +

1 +
√

5

4
v4

– 8 –
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To compare this solution with the general solution given in eqs. (C.1) and (C.2), one

rewrites the eigenvectors in the form:

λ = 1 , u1 =

4
∑

j=1

cos
π(2j − 1)

4
vj ∼ v1 − v2 − v3 + v4 ,

λ = 1 + 4 cos
2π

5
=

√
5 , u2 =

4
∑

j=1

sin
2πj

5
vj ∼

√

5 +
√

5 (v1 − v4) +

√

5 −
√

5 (v2 − v3) ,

λ = 1 + 4 cos
4π

5
= −

√
5 , u3 =

4
∑

j=1

sin
4πj

5
vj ∼

√

5 −
√

5 (v1 − v4) +

√

5 +
√

5 (v3 − v2)

Finally we translate the eigenvectors (3.1) into linear combinations of traces of products

of 5 matrix fields by first adding one unit, then taking the inverse in each permutation.

We outline the derivation for the element v2 = (2, 4)P ((e − (1, 4)). P is the sum of the

6 permutations over the elements {1, 2, 3}. We manifest it with the notation PS3
(1, 2, 3).

Furthermore (2, 4)PS3
(1, 2, 3) = PS3

(1, 3, 4)(2, 4) and (2, 4)(1, 4) = (1, 4)(1, 2). Then

v2 = PS3
(1, 3, 4)(2, 4) − PS3

(1, 3, 4)(1, 2)

According to the relations in Footnote 1 we add one unit in the symbols, evaluate the

inverse of the elements and rewrite in terms of matrix fields

v2 =
∑

p∈S3

tr

(

φ1φ2φ5φ3φ4

)

− tr

(

φ1φ3φ2φ4φ5

)

In a similar way we obtain the remaining basis vectors vj . To exhibit the symmetry in

compact equations, we denote underlined numbers as symbols which are fixed in the sum

over permutations.2

v1 =
∑

p∈S3

tr

(

φ1φ5φ2φ3φ4 − φ1φ2φ3φ4φ5

)

,

v2 =
∑

p∈S3

tr

(

φ1φ2φ5φ3φ4 − φ1φ3φ2φ4φ5

)

,

v3 =
∑

p∈S3

tr

(

φ1φ2φ3φ5φ4 − φ1φ3φ4φ2φ5

)

,

v4 =
∑

p∈S3

tr

(

φ1φ2φ3φ4φ5 − φ1φ3φ4φ5φ2

)

(3.2)

2For example

v3 =
X

p∈S3

tr (φ1φ2φ3φ5φ4 − φ1φ3φ4φ2φ5) =

= tr (φ1(φ2φ3φ5φ4 + φ2φ4φ5φ3 + φ3φ2φ5φ4 + φ3φ4φ5φ2 + φ4φ2φ5φ3 + φ4φ3φ5φ2))

− tr (φ1(φ3φ4φ2φ5 + φ3φ5φ2φ4 + φ4φ3φ2φ5 + φ4φ5φ2φ3 + φ5φ3φ2φ4 + φ5φ4φ2φ3))

– 9 –
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4. The replacements

In the literature it is more usual to represent states of scalar fields in term of 3 complex

fields Z , W , Y , rather then their 6 real components φα. One may choose

Z =
1√
2
(φ1 + iφ2) , W =

1√
2
(φ3 + iφ4) , Y =

1√
2
(φ5 + iφ6) ,

Z̄ =
1√
2
(φ1 − iφ2) , W̄ =

1√
2
(φ3 − iφ4) , Ȳ =

1√
2
(φ5 − iφ6) (4.1)

For △0 ≤ 6 our auxiliary model does not differ from superconformal Yang Mills theory,

in the sector we studied, then all the eigenstates we described, like in eqs. (2.5), (2.6) for

△0 = 4 or eq. (3.2) for △0 = 5, are eigenstates of the superconformal Yang Mills theory.

Writing them as real matrix fields or, through eq. (4.1) in terms of complex matrix fields

is irrelevant.

However the relevance of our auxiliary model depends on the possibility of yielding

the spectrum of superconformal Yang Mills theory for arbitrary values of △0. This is

performed by a trivial replacement rule.

Given an eigenvector of the auxiliary model pertinent to the group Sn , that is △0 = n+

1, it is a linear combination of basis vectors tr

(

φ1φα2
· · ·φαn+1

)

. One can partition the set of

flavours {1, α2, . . . , αn+1} in 3 sets , say of cardinality n1, n2, n3 such that n1+n2+n3 = n+1

and each nj ≥ 0. Then replace for each term of the linear combination all φαj
of the first

set with Z, those of the second set with W , those of the third set with Y . In this way one

obtains a state linear combination of states all in the sector tr (Zn1W n2Y n3). This linear

combination is an eigenstate of the superconformal Yang Mills theory.

This trivial replacement rule is correct because the trace operator
∑n+1

l=1 Kl,l+1 van-

ishes on states of the sector tr (Zn1W n2Y n3) and the remaining part of the dilatation

operator, the exchange operator
∑

Pl,l+1, eq. (2.1), acts in the same way irrespective of

the replacement.

Let us illustrate this vanishing for a simple example. Let us consider a state

tr (· · ·Zm · · · ) where all couples of adjacent matrix fields before and after Zm have dif-

ferent flavours. Then the possible non-vanishing contributions of the action of the trace

operator is due to its action on the m − 1 pairs of adjacent m matrix fields Z. If the first

field Z occurs at position r inside the trace

n+1
∑

l=1

Kl,l+1 tr (· · ·Zm · · · ) =
r+m−1
∑

l=r

Kl,l+1 tr (· · ·Zm · · · )

= Kr,r+1 tr

(

· · · (Z2)Zm−2 · · ·
)

+ Kr+1,r+2 tr

(

· · ·Z(Z2)Zm−3 · · ·
)

+ · · · +
+Kr+m−1,r+m tr

(

· · ·Zm−2(Z2) · · ·
)

where we have exhibited inside parenthesis the pair of adjacent Z fields at the sites where

the trace operator acts. Each term in the sum vanishes. Indeed for a term where the pair

of Z fields are on sites (l, l + 1) we have

Kl,l+1 tr

(

· · · (Z2) · · ·
)

= Kl,l+1 tr

(

· · · (φ2
1 − φ2

2 + iφ1φ2 + iφ2φ1) · · ·
)

= 0
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The different choices of fields in the sets nj may lead to inequivalent sets of eigenvectors

for the same sector tr (Zn1W n2Y n3). We illustrate how the replacement rule applies to the

basis vectors (3.2) with the choice n1 = n2 = 2 , n3 = 1, that is the sector tr

(

Z2W 2Y
)

The sector tr
(

Z2W 2Y
)

. In the irreducible representation (3, 1) of the group S4 each

basis vector vj vanishes if the field φ2 and φ5 are replaced with the same complex field.

The general solution (C.1) and (C.2) indicates one eigenvector with positive parity and

eigenvalue △2 = 4 and two eigenvectors with negative parity and eigenvalues △2 = 5±
√

5.

We do two inequivalent replacings: first {φ1 , φ2} → W , {φ3 , φ4} → Z , φ5 → Y and

second {φ2 , φ3} → W , {φ4 , φ5} → Z , φ1 → Y . These different replacements originate

sets of eigenvectors where the positive parity eigenvectors are inequivalent. As we know

all the eigenvectors in the sector tr

(

Z2W 2Y
)

from direct diagonalization, see appendix A,

further different replacements would not originate new eigenvectors.

The first replacement obtains the basis vectors

v1 = tr

(

(WZ2W + ZWZW − ZW 2Z − W 2Z2)Y
)

,

v2 = tr

(

(−WZ2W − ZWZW + ZW 2Z + Z2W 2)Y
)

,

v3 = tr

(

(−WZ2W − WZWZ + ZW 2Z + W 2Z2)Y
)

,

v4 = tr

(

(WZ2W + WZWZ − ZW 2Z − Z2W 2)Y
)

They originate one positive parity eigenstate

△2 = 4 , u =

4
∑

j=0

cos
(2j − 1)π

4
vj ∼ v1 − v2 − v3 + v4 =

= tr

(

(2WZ2W−2ZW 2Z+ZWZW +WZWZ−W 2Z2−Z2W 2)Y
)

and two negative parity eigenstates

△2 = 5 −
√

5 , u =

4
∑

j=0

sin
2πj

5
vj ∼ tr [(ZWZW − WZWZ)Y ]

+(
√

5 + 2)tr [(Z2W 2 − W 2Z2)Y ] ,

△2 = 5 +
√

5 , u =

4
∑

j=0

sin
4πj

5
vj ∼ −(

√
5 + 2)tr [(ZWZW − WZWZ)Y ]

+tr [(Z2W 2 − W 2Z2)Y ]

The second replacement obtains the basis vectors

v1 = tr

(

(Z2W 2 − WZWZ − WZ2W + ZWZW + ZW 2Z − W 2Z2)Y
)

,

v2 = tr

(

(−W 2Z2 + WZWZ + WZ2W − ZWZW − ZW 2Z + Z2W 2)Y
)

,

v3 = tr

(

(−Z2W 2 + ZWZW + WZ2W − WZWZ − ZW 2Z + W 2Z2)Y
)

,

v4 = tr

(

(W 2Z2 − ZWZW − WZ2W + WZWZ + ZW 2Z − Z2W 2)Y
)

They originate one positive parity eigenstate

△2 = 4 , u = tr

(

(ZW 2Z − WZ2W )Y
)
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and two negative parity eigenstates equal to the previous ones.

Anyway the substitutions here performed are just examples, other types of substitu-

tions are possible and lead to further eigenstates in sectors with different charges. Indeed

it is possible to replace just a subset of matrix fields φα and rewrite the remaining ones in

term of their defining complex fields. For instance from the state u4, given in eq. (2.6)

u4 = tr ((φ1φ2 − φ2φ1)(φ3φ4 − φ4φ3))

we may replace

(φ1φ2 − φ2φ1) = i(W̄W − WW̄ ) , φ3 → Z , φ4 → Y

and obtain the new eigenstate tr

(

(W̄W − WW̄ )(ZY − Y Z)
)

.

A. The lowest part of the spectrum

Eigenstates of the dilatation operator are listed here with the main quantum number

4 ≤ △0 ≤ 7 , in order of increasing values of the one loop contribution △2. The easiest

way to obtain them is direct diagonalization of the dilatation operator in finite dimensional

vector spaces invariant under its action (the sectors).

Since re-labelling of fields trivially leads to equivalent eigenstates, we only list eigen-

states of the form tr

(

ZaW bY c
)

with a ≥ b ≥ c.

Eigenstates with the same values of △0 and △2 are here written as eigenstates of

the parity operator. Occasionally further degeneracies occur and linear combinations of

degenerate eigenstates with the same quantum numbers are equally valid.

△0= 4 , △2= 0 :

tr

(

Z4
)

, tr

(

Z3W
)

, 2 tr

(

Z2W 2
)

+ tr (ZWZW ) ,

tr

(

Z2(WY + Y W )
)

+ tr (ZWZY ) .

△0= 4 , △2= 4 :

tr

(

Z2(WY − Y W )
)

.

△0= 4 , △2= 6 :

tr

(

Z2W 2
)

− tr (ZWZW ) , tr

(

Z2(WY + Y W )
)

− 2 tr (ZWZY ) .

△0= 5 , △2= 0 :

tr

(

Z5
)

, tr

(

Z4W
)

, tr

(

Z3W 2 + Z2WZW
)

,

tr

(

Z3(WY + Y W )
)

+ tr

(

Z2(WZY + Y ZW )
)

,

tr

(

Z2(W 2Y + Y W 2 + WY W ) + ZW (ZWY + ZY W + WZY )
)

.

△0= 5 , △2= 5 −
√

5 = 8 sin2 π
5 :

(√
5 + 1

)

tr

(

Z3(Y W − WY )
)

+ 2 tr

(

Z2(Y ZW − WZY )
)

,
(

2 +
√

5
)

tr

(

Z2(Y W 2 − W 2Y )
)

+ tr (ZWZ(Y W − WY )) .
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△0= 5 , △2= 4 :

tr

(

Z3W 2 − Z2WZW
)

, tr

(

Z2WY W − W 2ZY Z
)

,

tr

(

Z2(WZY + Y ZW − ZWY − ZY W )
)

,

tr

(

ZWZ(Y W + WY ) − Z2(W 2Y + Y W 2)
)

.

△0= 5 , △2= 6 :

tr

(

Z2(W 2Y + Y W 2 − 2WY W ) + WZ(WY Z + WZY − 2Y ZW )
)

.

△0= 5 , △2= 5 +
√

5 = 8 sin2 2π
5 :

−
(√

5 − 1
)

tr

(

Z3(Y W − WY )
)

+ 2 tr

(

Z2(Y ZW − WZY )
)

,
(√

5 − 2
)

tr

(

Z2(W 2Y − Y W 2)
)

− tr (ZWZ(Y W − WY )) .

△0= 6 , △2= 0 :

tr

(

Z6
)

, tr

(

Z5W
)

, tr

(

2Z4W 2 + 2Z3WZW + Z2WZ2W
)

,

3 tr

(

Z3W 3 + W 2Z2WZ + Z2W 2ZW
)

+ tr (ZWZWZW ) ,

tr

(

Z4(WY + Y W ) + Z3(WZY + Y ZW ) + Z2WZ2Y
)

,

tr
(

(Z3W 2 + W 2Z3 + Z2W 2Z + ZW 2Z2 + Z2WZW + WZWZ2

+ZWZ2W + WZ2WZ + WZ3W + ZWZWZ)Y
)

,

2 tr
(

Z2W 2Y 2 + Y 2W 2Z2 + Z2WY WY + Y WY WZ2 + Z2Y W 2Y

+W 2ZY 2Z + Z2WY 2W + ZWZWY 2 + Y 2WZWZ + ZWZY WY

+W 2ZY ZY + Y ZY ZW 2 + WZWY ZY + ZWY WZY
)

+tr (WZY WZY + ZWY ZWY ) .

△0= 6 , △2= 2 :

tr

(

Z4WY − Y WZ4 + Z3WZY − Y ZWZ3
)

,

−2 tr

(

(Z3W 2 − W 2Z3)Y
)

− tr

(

(Z2W 2Z − ZW 2Z2)Y
)

−tr

(

(Z2WZW − WZWZ2)Y
)

,

−3 tr

(

Z2W 2Y 2 − Y 2W 2Z2
)

+ tr
(

Z2Y WY W − WY WY Z2 + Y 2WZWZ

−ZWZWY 2 + ZY ZY W 2 − W 2Y ZY Z
)

.

△0= 6 , △2= 5 −
√

5 = 8 sin2 π
5 :

−(1 +
√

5) tr

(

Z4W 2
)

+ (
√

5 − 1) tr

(

Z3WZW
)

+ 2tr
(

Z2WZ2W
)

,

−2(2 +
√

5) tr

(

Z3W 3
)

+ (1 +
√

5) tr

(

Z2W 2ZW + W 2Z2ZW
)

+ 2 tr (ZWZWZW ) ,

−(1 +
√

5)tr
(

Z4(WY + Y W )
)

+ (
√

5 − 1)tr
(

Z3(WZY + Y ZW )
)

+ 4 tr

(

Z2WZ2Y
)

,

2 tr

(

(Z3W 2+W 2Z3−Z2W 2Z−ZW 2Z2)Y
)

+(
√

5 − 3) tr

(

(Z2WZW +WZWZ2)Y
)

+

+(5 − 3
√

5) tr (ZWZWZY ) + (1 +
√

5) tr

(

WZ3WY
)

,
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−(
√

5 + 1) tr

(

(Z2W 2Z + ZW 2Z2)Y
)

+ 2 tr

(

(ZWZ2W + WZWZ2)Y
)

+

+(
√

5 − 3) tr (ZWZWZY ) + (1 +
√

5) tr

(

WZ3WY
)

,

2 tr

(

W 2ZY ZY + Y ZY ZW 2 − Y 2ZWZW − WZWZY 2
)

+

+(
√

5 + 1) tr

(

Z2Y W 2Y − Z2WY 2W
)

+ (
√

5 − 1) tr (ZWY WZY − ZWZY WY ) ,

(
√

5 − 1) tr (WZY WZY + ZWY ZWY ) − 2
√

5 tr

(

W 2ZY ZY + Y ZY ZW 2
)

+

+2 tr

(

Z2WY WY +Y WY WZ2+Y 2ZWZW +WZWZY 2−Z2W 2Y 2−Y 2W 2Z2
)

+

+4 tr

(

ZWZY WY − Z2Y W 2Y − W 2ZY 2Z
)

+ 2(1 +
√

5) tr

(

Z2WY 2W
)

,

2 tr

(

W 2ZY ZY + Y ZY ZW 2 − Z2WY WY − Y WY WZ2
)

+

+(
√

5 − 1) tr (WZWY ZY − ZWZY WY ) + (
√

5 + 1) tr

(

W 2ZY 2Z − Z2WY 2W
)

.

△0= 6 , △2= 7 −
√

13 :

2(4+
√

13)tr
(

Z2W 2Y 2+Y 2W 2Z2
)

−2(
√

13+3)tr
(

Z2Y W 2Y +W 2ZY 2Z+Y 2WZ2W
)

+

−2 tr

(

Z2WY WY +Y WY WZ2+Y 2ZWZW +WZWZY 2+W 2ZY ZY +Y ZY ZW 2
)

+

+4tr (ZWZY WY +WZWY ZY +ZWY WZY )+(
√

13+1)tr (WZY WZY +ZWY ZWY ).

△0= 6 , △2= 4 :

tr

(

Z3(WZY − Y ZW )
)

△0= 6 , △2= 5 :

tr

(

(Z3W 2+W 2Z3−Z2W 2Z−ZW 2Z2+Z2WZW +WZWZ2)Y
)

−2tr
(

WZ3WY
)

,

tr

(

(Z3W 2 − W 2Z3 − Z2W 2Z + ZW 2Z2 − Z2WZW + WZWZ2)Y
)

,

2 tr

(

Z2WY 2W − Z2Y W 2Y + ZWY WZY − ZWZY WY
)

+

+tr

(

W 2ZY ZY + Y ZY ZW 2 − ZWZWY 2 − Y 2WZWZ
)

,

2 tr

(

Z2WY 2W − W 2ZY Y 2Z + WZWY ZY − ZWZY WY
)

+

+tr

(

W 2ZY ZY + Y ZY ZW 2 − Z2WY WY − Y WY WZ2
)

,

tr

(

Z2WY WY − Y WY WZ2 + W 2ZY ZY − Y ZY ZW 2
)

,

tr

(

Z2WY WY − Y WY WZ2 + Y 2WZWZ − ZWZWY 2
)

.

△0= 6 , △2= 6 :

tr

(

Z2W 2ZW − W 2Z2WZ
)

, tr

(

Z4WY − Y WZ4 − Z3WZY + Y ZWZ3
)

,

tr

(

(ZWZ2W − WZ2WZ)Y
)

, tr

(

(Z2W 2Z − ZW 2Z2 − Z2WZW + WZWZ2)Y
)

,

tr
(

Z2W 2Y 2 − Y 2W 2Z2 + Z2Y WY W − WY WY Z2 + Y 2WZWZ − ZWZWY 2+ ,

+ZY ZY W 2 − W 2Y ZY Z
)

, tr (WZY WZY − ZWY ZWY ) .

△0= 6 , △2= 5 +
√

5 :

(
√

5 − 1) tr

(

Z4W 2
)

− (
√

5 + 1) tr

(

Z3WZW
)

+ 2tr
(

Z2WZ2W
)

,

−2(2 −
√

5) tr

(

Z3W 3
)

+ (1 −
√

5) tr

(

Z2W 2ZW + W 2Z2ZW
)

+ 2 tr (ZWZWZW ) ,

– 14 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
0

(
√

5 − 1) tr

(

Z4(WY + Y W )
)

− (
√

5 + 1) tr

(

Z3(WZY + Y ZW )
)

+ 4 tr

(

Z2WZ2Y
)

,

2tr
(

(Z3W 2+W 2Z3−Z2W 2Z−ZW 2Z2)Y
)

− (
√

5+3)tr
(

(Z2WZW +WZWZ2)Y
)

+

+(5 + 3
√

5) tr (ZWZWZY ) + (1 −
√

5) tr

(

WZ3WY
)

,

(
√

5 − 1) tr

(

(Z2W 2Z + ZW 2Z2)Y
)

+ 2 tr

(

(ZWZ2W + WZWZ2)Y
)

+

−(
√

5 + 3) tr (ZWZWZY ) + (1 −
√

5) tr

(

WZ3WY
)

,

2 tr

(

ZWZWY 2 + Y 2WZWZ − W 2ZY ZY − Y ZY ZW 2
)

+

−(
√

5 − 1) tr

(

Z2Y W 2Y − Z2WY 2W
)

+ (
√

5 + 1) tr (ZWY WZY − ZWZY WY ) ,

(1 +
√

5) tr (WZY WZY + ZWY ZWY ) − 2
√

5 tr

(

W 2ZY ZY + Y ZY ZW 2
)

+

−2tr
(

Z2WY WY +Y WY WZ2+Y 2ZWZW +WZWZY 2−Z2W 2Y 2−Y 2W 2Z2
)

+

−4 tr

(

ZWZY WY − Z2Y W 2Y − W 2ZY 2Z
)

+ 2(
√

5 − 1) tr

(

Z2WY 2W
)

,

−2 tr

(

W 2ZY ZY + Y ZY ZW 2 − Z2WY WY − Y WY WZ2
)

+

+(
√

5 + 1) tr (WZWY ZY − ZWZY WY ) + (
√

5 − 1) tr

(

W 2ZY 2Z − Z2WY 2W
)

.

△0= 6 , △2= 7 +
√

13 :

2(4−
√

13)tr
(

Z2W 2Y 2+Y 2W 2Z2
)

+2(
√

13−3)tr
(

Z2Y W 2Y +W 2ZY 2Z+Y 2WZ2W
)

+

−2tr
(

Z2WY WY +Y WY WZ2+Y 2ZWZW +WZWZY 2+W 2ZY ZY +Y ZY ZW 2
)

+

+4tr (ZWZY WY+WZWY ZY+ZWY WZY )−(
√

13−1)tr (WZY WZY+ZWY ZWY ) .

△0= 7 , Sector {Z5W 2} , eigenstates with positive parity:

△2 = 0 , u = tr

(

Z5W 2 + Z4WZW + Z3WZ2W
)

,

△2 = 2 , u = tr

(

Z5W 2 − Z3WZ2W
)

,

△2 = 6 , u = tr

(

Z5W 2
)

− 2 tr

(

Z4WZW
)

+ tr

(

Z3WZ2W
)

△0= 7 , Sector {Z5WY } , eigenstates with positive parity:

△2 = 0 , u =
6
∑

j=1

tr

(

Zj−1Y Z6−jW
)

,

△2 = 2 , u = tr

(

Z5(WY + Y W ) − Z3(WZ2Y + Y Z2W )
)

,

△2 = 6 , u = tr

(

Z5(WY +Y W )
)

−2 tr

(

Z4(WZY +Y ZW )
)

+tr

(

Z3(WZ2Y +Y Z2W )
)

△0= 7 , Sector {Z5WY } , eigenstates with negative parity:

△2=8sin2(π/7) , u =sin(2π/7)tr
(

Z5(WY −Y W )
)

+sin(4π/7)tr
(

Z4(WZY −Y ZW )
)

+

+ sin(6π/7) tr

(

Z3(WZ2Y − Y Z2W )
)

,

△2=8sin2(2π/7) , u = − sin(4π/7)tr
(

Z5(WY −Y W )
)

+sin(6π/7)tr
(

Z4(WZY −Y ZW )
)

+

+ sin(2π/7) tr

(

Z3(WZ2Y − Y Z2W )
)

,

△2=8sin2(3π/7) , u =sin(6π/7)tr
(

Z5(WY −Y W )
)

−sin(2π/7)tr
(

Z4(WZY −Y ZW )
)

+

+ sin(4π/7) tr

(

Z3(WZ2Y − Y Z2W )
)

.
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△0= 7 , Sector {Z4W 3} , eigenstates with positive parity:

△2 = 0 , u = tr

(

Z4W 3 + Z3W 2ZW + W 2Z3WZ + Z2W 2Z2W + Z2WZWZW
)

△2 = 2 , u = tr

(

−2Z4W 3 + Z2W 2Z2W + Z2WZWZW
)

△2 = 5 , u = tr

(

2Z4W 3 − 3(Z3W 2ZW + W 2Z3WZ) + 2Z2W 2Z2W + 2Z2WZWZW
)

△2 = 6 , u = tr

(

−Z2W 2Z2W + Z2WZWZW
)

△0 = 7, Sector {Z4W 3} , eigenstates with negative parity:

△2 = 5 , u = tr

(

Z3W 2ZW − W 2Z3WZ
)

△0= 7 , Sector {Z4W 2Y }. Basis vectors with positive parity:

v1 = tr

(

(Z4W 2 + W 2Z4)Y
)

, v2 = tr

(

(Z3W 2Z + ZW 2Z3)Y
)

,

v3 = tr

(

(Z3WZW + WZWZ3)Y
)

, v4 = tr

(

Z2W 2Z2Y
)

,

v5 = tr

(

(Z2WZWZ + ZWZWZ2)Y
)

, v6 = tr

(

(Z2WZ2W + WZ2WZ2)Y
)

,

v7 = tr

(

ZWZ2WZY
)

, v8 = tr

(

(ZWZ3W + WZ3WZ)Y
)

,

v9 = tr

(

WZ4WY
)

.

Eigenvalues and eigenstates:

△2 = 0 , u =

9
∑

1

vj ,

△2 = 2 , u = 2(v1 + v9) − (v4 + v5 + v6 + v7) ,

△2 = 2 , u = −(v1 + v2 + v4) + (v6 + v7 + v8) ,

△2 = 4 , u = −v1 − v3 − v6 + v8 + 2(v4 + v9) ,

△2 = 5 , u = 2(v1 + v4 + v5 + v6 + v7 + v9) − 3(v2 + v3 + v8) ,

△2 = 6 , u = −v1 + v2 + v5 − v8 − 2(v4 − v9) ,

△2 = 6 , u = v2 − v3 − v4 + v6 ,

△2 = 6 , u = v2 − v3 − v5 + v6 ,

△2 = 8 , u = −(v1 + v5) + 3(v3 − v8) + 2(v4 + v9) − 4v5 + 8v7 ,

△0= 7 , Sector {Z4W 2Y }. Basis vectors with negative parity:

v1 = tr

(

(Z4W 2 − W 2Z4)Y
)

, v2 = tr

(

(Z3W 2Z − ZW 2Z3)Y
)

,

v3 = tr

(

(Z3WZW − WZWZ3)Y
)

, v4 = tr

(

(Z2WZWZ − ZWZWZ2)Y
)

,

v5 = tr

(

(Z2WZ2W − WZ2WZ2)Y
)

, v6 = tr

(

(ZWZ3W − WZ3WZ)Y
)

.

Eigenvalues and eigenstates:

△2 = 8 sin2 π/7 , u = sin(2π/7) (v1 + v3 + v5 + v6) + sin(4π/7) (v1 + v2 + v4 − v6)+

+ sin(6π/7) (v2 + v3 − v4 − v5) ,
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△2 = 4 , u = − 2v1 + v2 + v3 + v4 + v5 ,

△2 = 8 sin2 2π/7 , u = sin(4π/7)(v1+v3+v5+v6)+sin(8π/7)(v1+v2+v4−v6)+

+ sin(12π/7) (v2 + v3 − v4 − v5) ,

△2 = 5 , u =v2 − v3 + v6 ,

△2 = 8 sin2 3π/7 , u = sin(6π/7) (v1 + v3 + v5 + v6) + sin(12π/7) (v1 + v2 + v4 − v6) +

+ sin(4π/7) (v2 + v3 − v4 − v5) ,

△2 = 8 , u = − v2 + v3 + 3(v4 − v5) + 2v6

△0= 7 , Sector {Z3W 3Y }. Basis vectors with positive parity:

v1 = tr

(

Z3W 3Y + Y W 3Z3
)

, v2 = tr

(

Z2W 3ZY + Y ZW 3Z2
)

,

v3 = tr

(

Z2W 2ZWY + Y WZW 2Z2
)

, v4 = tr

(

Z2WZW 2Y + Y W 2ZWZ2
)

,

v5 = tr

(

ZW 2ZWZY + Y ZWZW 2Z
)

, v6 = tr

(

ZW 2Z2WY + Y WZ2W 2Z
)

,

v7 = tr

(

ZWZ2W 2Y + Y W 2Z2WZ
)

, v8 = tr (ZWZWZWY + Y WZWZWZ) ,

v9 = tr

(

W 2Z3WY + Y WZ3W 2
)

, v10 = tr

(

WZ2WZWY + Y WZWZ2W
)

.

Eigenvalues and eigenstates:

△2 = 0 , u =

10
∑

1

vj ,

△2 = 2 , u = 2(v1 + v9) − (v3 + v5 + v6 + v8) ,

△2 = 2 , u = 2(v1 + v2) − (v6 + v7 + v8 + v10) ,

△2 = 4 , u = v1 − v2 + v4 − v9 ,

△2 = 5 , u = v2 + v7 + v10 − 2(v1 + v6 + v8) − 3v4 ,

△2 = 5 , u = v3 + v5 + v9 − 2(v1 + v6 + v8) − 3v4 ,

△2 = 6 , u = v3 − v5 ,

△2 = 6 , u = v6 − v8 ,

△2 = 6 , u = v7 − v10 ,

△2 = 8 , u = v1 − v2 − v9 + 2(v3 + v5 − v6 + v7 − v8 + v10) − 3v4

△0= 7 , Sector {Z3W 3Y }. Basis vectors with negative parity:

v1 = tr

(

Z3W 3Y − Y W 3Z3
)

, v2 = tr

(

Z2W 3ZY − Y ZW 3Z2
)

,

v3 = tr

(

Z2W 2ZWY − Y WZW 2Z2
)

, v4 = tr

(

Z2WZW 2Y − Y W 2ZWZ2
)

,

v5 = tr

(

ZW 2ZWZY − Y ZWZW 2Z
)

, v6 = tr

(

ZW 2Z2WY − Y WZ2W 2Z
)

,

v7 = tr

(

ZWZ2W 2Y − Y W 2Z2WZ
)

, v8 = tr (ZWZWZWY − Y WZWZWZ) ,

v9 = tr

(

W 2Z3WY − Y WZ3W 2
)

, v10 = tr

(

WZ2WZWY − Y WZWZ2W
)

.
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Eigenvalues and eigenstates:

△2 = 8 sin2 π/7 , u =(sin 2π/7 + sin 4π/7 + sin 6π/7) v1 + (sin 4π/7)(v2 − v9)

+ (sin 2π/7)(v3 + v7) + (sin 2π/7 + sin 4π/7 − sin 6π/7) v4

+ (sin 6π/7)(−v5 + v10) + (sin 2π/7 − sin 4π/7 − sin 6π/7) v6

+ (sin 2π/7 − sin 4π/7 + sin 6π/7) v8 ,

△2 = 4 , u =v2 + v3 − v7 + v9 ,

△2 = 8 sin2 2π/7 , u =(sin 2π/7 − sin 4π/7 + sin 6π/7) v1 + (sin 6π/7)(v2 − v9)

− (sin 4π/7)(v3 + v7) + (− sin 2π/7 − sin 4π/7 + sin 6π/7) v4

+ (sin 2π/7)(−v5 + v10) − (sin 2π/7 + sin 4π/7 + sin 6π/7) v6

+ (sin 2π/7 − sin 4π/7 − sin 6π/7) v8 ,

△2 = 5 , u =v2 − v4 + v7 − v10 ,

△2 = 5 , u =v3 − v4 + v5 − v9 ,

△2 = 8 sin2 3π/7 , u =(− sin 2π/7 + sin 4π/7 + sin 6π/7) v1 + (sin 2π/7) (v9 − v2)

+ (sin 6π/7) (v3 + v7) − (sin 2π/7 + sin 4π/7 − sin 6π/7) v4

+ (sin 4π/7)(−v5 + v10) + (sin 2π/7 − sin 4π/7 + sin 6π/7) v6

+ (sin 2π/7 + sin 4π/7 + sin 6π/7) v8 ,

△2 = 8 , u =v2 − v3 + v7 + v9 + 2(v5 + v10) ,

The remaining 3 eigenvectors correspond to the eigenvalues △2= 7 − λ where λ are the

roots of the equation : λ3 − λ2 − 17λ + 25 = 0.

△0= 7 , Sector {Z3W 2Y 2}. Basis vectors with positive parity:

v1 = tr

(

Z3W 2Y 2 + Y 2W 2Z3
)

, v2 = tr

(

Z2W 2ZY 2 + Y 2ZW 2Z2
)

,

v3 = tr

(

Z2WZWY 2 + Y 2WZWZ2
)

, v4 = tr

(

ZWZ2WY 2 + Y 2WZ2WZ
)

,

v5 = tr

(

ZWZWZY 2
)

, v6 = tr

(

WZ3WY 2
)

,

v7 = tr

(

Z3WY WY + Y WY WZ3
)

, v8 = tr

(

Z2WZY WY + Y WY ZWZ2
)

,

v9 = tr

(

Z2W 2Y ZY + Y ZY W 2Z2
)

, v10 = tr (ZWZWY ZY + Y ZY WZWZ) ,

v11 = tr

(

ZW 2ZY ZY
)

, v12 = tr

(

WZ2WY ZY
)

,

v13 = tr

(

Z3Y W 2Y
)

, v14 = tr

(

Z2WY WZY + Y ZWY WZ2
)

,

v15 = tr

(

Z2WY ZWY + Y WZY WZ2
)

, v16 = tr (ZWZY WZY + Y ZWY ZWZ) ,

v17 = tr

(

ZW 2Y Z2Y + Y Z2Y W 2Z
)

, v18 = tr

(

WZWY Z2Y
)

.

Eigenvalues and eigenstates:

△2 = 0 , u =

18
∑

1

vj ,

△2 = 2 , u = −2v1 + 4v2 + v3 + 3v5 − 4(v6 + v7) − v8 + v9 + 2v10 + 3v11

+ v12 − 4v13 − v14 + v18 ,
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△2 = 2 , u = v1 − 2v2 − v3 − v4 − 2v5 + v6 + 2v7 − v10 − v11 − v12 + 3v13 + v14 + v17 ,

△2 = 2 , u = −3v2−v3−2v5+2v6+2v7+v8−v9−v10−2v11+2v13+v14+v15+v16 ,

△2 = 4 , u = v1 − 2v2 − v3 + v4 + 2v6 − v7 − 2v8 + v9 + v10 + 2v12 − 2v13

− v16 + v17 + 2v18 ,

△2 = 4 , u = −v3 + 2v6 − v8 + v9 − 2v13 + v14 ,

△2 = 5 , u = v1 + v2 − 3v4 − 2v5 + 4v6 + v7 − 3v9 + v10 + 4v11 − 2v12 − 2v13 − 3v14

+ v15 + v16 + 4v18 ,

△2 = 5 , u = −v1 − v2 + 2v3 + v4 − 2v5 − v7 + 2v8 + v9 − v10 − 2v12 − 2v13

+ v14 − v15 − v16 + 2v17 ,

△2 = 6 , u = v5 − v11 − v12 + v18 ,

△2 = 6 , u = v1 − 2v3 + v4 + 2v5 − v6 + v8 − v9 − v10 + v11 − v12 − v13 + v17 ,

△2 = 6 , u = v3 + v6 − v7 − v8 − v11 − v12 + v13 + v16 ,

△2 = 6 , u = v2 + v3 − 2v5 + v6 − v7 − v8 − v10 − v11 + v12 + v13 + v15 ,

△2 = 6 , u = v3 − v8 − v9 + v14 ,

△2 = 8 , u = −2v1 + 4v2 + v3 + 2v4 − 4v5 − 6v6 + 10v7 − 5v8 − v9 − 2v10 − 12v11 + 8v12

− 10v13 − 7v14 − 8v15 + 10(v16 + v17) ,

△2 = 8 , u = −4v1 + 8v2 − 3v3 + 24v4 − 28v5 − 22v6 + 20v7 − 15v8 + 3v9

− 4(v10 + v11 + v12) − 10v13 − 9v14 − 16v15 + 20(v16 + v18) .

The remaining 3 eigenvectors correspond to the eigenvalues △2= 7 − λ where λ are the

roots of the equation : λ3 + λ2 − 17λ − 25 = 0.

△0= 7 , Sector {Z3W 2Y 2}. Basis vectors with negative parity:

v1 = tr

(

Z3W 2Y 2 − Y 2W 2Z3
)

, v2 = tr

(

Z2W 2ZY 2 − Y 2ZW 2Z2
)

,

v3 = tr

(

Z2WZWY 2 − Y 2WZWZ2
)

, v4 = tr

(

ZWZ2WY 2 − Y 2WZ2WZ
)

,

v5 = tr

(

Z3WY WY − Y WY WZ3
)

, v6 = tr

(

Z2WZY WY − Y WY ZWZ2
)

,

v7 = tr

(

Z2W 2Y ZY − Y ZY W 2Z2
)

, v8 = tr (ZWZWY ZY − Y ZY WZWZ) ,

v9 = tr

(

Z2WY WZY − Y ZWY WZ2
)

, v10 = tr

(

Z2WY ZWY − Y WZY WZ2
)

,

v11 = tr (ZWZY WZY − Y ZWY ZWZ) , v12 = tr

(

ZW 2Y Z2Y − Y Z2Y W 2Z
)

.

Eigenvalues and eigenstates:

△2=8sin2 π/7 , u =(2 sin 2π/7 + 2 sin 4π/7 + sin 6π/7)v1 + (sin 2π/7 + sin 4π/7)v2

+ (sin 2π/7+sin 4π/7+sin 6π/7)(v3+v7)+(sin 6π/7)(v4+v12)

+(2 sin 4π/7−sin 6π/7)v5+(sin 2π/7−sin 4π/7+2 sin 6π/7)(v6+v9)

+(− sin 2π/7+3 sin 4π/7−3 sin 6π/7)v8+(− sin 2π/7+sin 4π/7)v10

+ (sin 2π/7 − sin 4π/7 + sin 6π/7)v11 ,

△2 = 4 , u = − v3 − v4 + v7 + v12 ,
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△2 = 4 , u = − v1 + v2 − v3 − 2v4 + v5 + v6 + v7 + v9 + v10 ,

△2=8sin2 2π/7 , u =(sin 2π/7 − 2 sin 4π/7 + 2 sin 6π/7)v1 + (sin 6π/7 − sin 4π/7)v2

+ (sin 2π/7−sin 4π/7+sin 6π/7)(v3+v7)+(sin 2π/7)(v4+v12)

+(2 sin 6π/7−sin 2π/7)v5+(2 sin 2π/7−sin 4π/7−sin 6π/7)(v6+v9)

+(sin 4π/7−3 sin 2π/7+3 sin 6π/7)v8+(sin 4π/7+sin 6π/7)v10

+ (sin 2π/7 − sin 4π/7 − sin 6π/7)v11 ,

△2 = 5 , u =v3 − v4 + v6 − v7 − v9 + v12 ,

△2 = 5 , u = − v1 − v2 + v4 + v5 + v7 + v8 + v9 − v10 + v11 ,

△2=8sin2 3π/7 , u =(−2 sin 2π/7 + sin 4π/7 + 2 sin 6π/7)v1 + (sin 6π/7 − sin 2π/7)v2

+ (sin 4π/7 − sin 2π/7 + sin 6π/7)(v3 + v7) + (sin 4π/7)(v4 + v12)

− (2 sin 2π/7+sin 4π/7)v5+(sin 2π/7+2 sin 4π/7+sin 6π/7)(v6+v9)

− (3 sin 2π/7 + 3 sin 4π/7 + sin 6π/7)v8 − (sin 2π/7 + sin 6π/7)v10

+ (sin 2π/7 + sin 4π/7 + sin 6π/7)v11 ,

△2 = 8 , u =v3 − v4 − 2v6 − v7 + 2v9 + v12 ,

△2 = 8 , u =v1 + v2 − 3v3 + 2v4 − v5 + 3v6 − v7 + 2v8 − v9 + v10 + 2v11 ,

The remaining 3 eigenvectors correspond to the eigenvalues △2= 7 − λ where λ are the

roots of the cubic equation: λ3 − λ2 − 17λ + 25 = 0.

B. The eigenvalues

The text [7], provides a table with all the irreducible representation for the generators of the

permutation group Sn up to n = 7. It is easy to obtain all the irreducible representations

for the operator A in eq. (2.3), up to the same order. We list here the representations of

the operator A corresponding to Sn, 3 ≤ n ≤ 6, and the eigenvalues.

To denote the irreducible representation, we write the sequence of integers correspond-

ing to the number of boxes in the horizontal rows of the Young tableaux. For instance

(22, 12) is the irreducible representation of S6 where the Young tableau has two boxes in

the first two horizontal rows, and one box in the third and fourth row.

If △0 = 4 , the relevant group is S3. Beside the two 1-dimensional representations

corresponding to the partitions (3) and (13) , we only need the 2-dimensional representation

corresponding to the partition (2, 1) which may be chosen

(2, 1) , A =

(

−1 1

1 −1

)

, λ = 0 , λ = −2

If △0 = 5, the group is S4. Beside the two 1-dimensional representations corresponding to

the partitions (4) and (14), there are: one 2-dimensional representation corresponding to

the partition (22) and two 3-dimensional representations corresponding to the partitions

(3, 1) and (2, 12). They respectively may be chosen

(22) , A =

(

0 −1

−1 0

)

, λ = ±1 ,
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(3, 1) , A =





−1 2 −2

0 2 −1

−2 1 0



 , λ = ±
√

5 , λ = 1 ,

(2, 12) , A =





0 −1 2

1 −2 2

2 0 1



 , λ = ±
√

5 , λ = −1 ,

If △0 = 6 the group is S5. Beside the two 1-dimensional representations corresponding

to the partitions (5) and (15), there are: two 4-dimensional representations , corresponding

to the partitions (4, 1) and (2, 13), two 5-dimensional representations corresponding to the

partitions (3, 2) and (22, 1), and one 6-dimensional representation corresponding to the

partition (3, 12) . They respectively may be chosen

(4, 1) , A =









0 2 0 −2

0 2 2 −2

−2 2 3 −1

−2 0 1 1









, λ = 4 , λ = 1 ±
√

5 , λ = 0 ,

(2, 13) , A =









−3 −1 0 0

−1 −3 0 0

0 0 −2 0

0 0 0 −2









, λ = −4 , λ = −2 three times ,

(3, 2) , A =















0 1 0 0 −1

0 1 0 0 0

0 0 2 0 −2

−1 1 −1 1 1

−1 1 −1 1 0















, λ = 1 twice , λ = 1 ±
√

5 , λ = 0 ,

(22, 1) , A =















3 0 −4 0 2

1 1 −2 0 1

1 −1 −4 2 1

−1 1 2 −1 2

−1 −1 2 2 −3















, λ = 1 twice , λ = −1 ±
√

13 , λ = −4 ,

(3, 12) , A =



















0 0 1 0 1 0

2 0 1 −2 2 1

2 1 1 −2 0 2

1 0 0 −1 1 1

1 2 0 −1 0 2

0 1 1 0 0 2



















, λ = 1 twice , λ = −2 twice , λ = 4 , λ = 0

To make easier the comparison with eigenvalues already evaluated, see table 3.2 in the

reference [1], we remark that the Laplacian eigenvalues △2 = 5 ±
√

5 and △2 = 7 ±
√

13

are the roots of the equations E2 − 10E + 20 = 0 and E2 − 14E + 36 = 0 respectively.

If △0 = 7 , the group is S6. Beside the two 1-dimensional representations corresponding

to the partitions (6) and (16) , there are: four 5-dimensional representations corresponding

to the partitions (5, 1) , (32) , (23), (2, 14), two 9-dimensional representations, correspond-

ing to the partitions (4, 2), (22, 14), two 10-dimensional representations, corresponding to
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the partitions (4, 12), (3, 13), and one 16-dimensional representation corresponding to the

partition (3, 2, 1). They respectively may be chosen

(5, 1) , A =















1 2 0 0 −2

0 3 2 0 −2

−2 2 3 2 −2

−2 0 2 4 −1

−2 0 0 1 2















, λ = 1 , λ = 5, λ3 − 7λ2 + 7λ + 7 = 0 ,

(32) , A =















2 −1 1 1 −3

0 2 1 0 −2

0 0 3 0 −2

0 −1 0 3 −1

1 −3 2 3 −5















, λ = 2 twice , λ3 − λ2 − 17λ + 25 = 0 ,

(23) , A =















4 −1 −2 2 3

3 −3 0 0 2

2 0 −3 1 1

3 −1 0 −2 2

1 0 0 0 −1















, λ = −2 twice , λ3 + λ2 − 17λ − 25 = 0 ,

(2, 14) , A =















−2 −1 2 −2 2

1 −4 2 0 0

0 2 −3 2 0

0 0 2 −3 2

2 −2 2 0 −1















, λ=−1 , λ=−5, λ3+7λ2+7λ−7=0 ,

(4, 2) , A =































1 0 1 1 0 −1 0 −1 0

0 0 1 1 1 −1 1 −1 −1

0 −1 3 0 1 0 1 −2 −1

−1 1 0 2 1 −1 0 1 −1

−1 0 1 1 2 0 0 −1 0

0 −1 1 −1 1 3 1 −1 −2

−1 0 0 1 0 −1 2 1 0

−1 −1 0 2 0 −1 1 1 1

0 −1 0 0 1 −1 1 0 1































, λ = −1 twice , λ = 1 twice ,

λ = 2 twice , λ = 3 twice , λ = 5,

(22, 12) , A =































0 0 0 −2 −1 0 1 0 1

0 0 0 1 −2 0 2 −1 0

−1 1 −2 1 0 0 0 0 −1

−1 1 −1 −3 0 1 −1 0 0

−1 0 0 1 −2 1 0 0 0

0 −2 1 1 1 −2 0 1 1

0 0 0 −1 1 0 −3 1 −1

1 −1 0 −1 0 1 0 −1 1

0 1 −1 0 −1 1 0 0 −2































, λ = −1 twice ,

λ = 1 twice , λ = −2 twice , λ = −3 twice , λ = −5,
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(4, 12) , A =



































1 0 1 0 0 0 0 1 0 0

2 0 1 0 1 0 −1 1 1 0

2 1 1 −1 1 1 −1 0 1 0

1 1 0 1 1 0 −2 1 1 1

1 2 1 0 2 1 −2 −1 2 1

0 1 1 0 1 2 −1 −1 0 2

1 0 0 0 0 0 0 1 0 1

1 1 0 1 0 0 −1 1 1 1

0 1 0 1 1 0 −1 0 1 2

0 0 0 1 0 1 0 0 0 3



































, λ = −1 twice , λ = 0 twice ,

λ = 1 , λ = 3 twice , λ3 − 7λ2 + 7λ + 7 = 0,

(3, 13) , A =



































−3 2 −1 1 −2 1 −1 0 0 0

0 −1 1 0 0 −2 1 1 −1 0

0 0 −1 1 1 −1 −1 0 1 −1

0 1 −1 0 −1 2 −2 −1 1 0

−1 0 0 0 −2 1 0 −1 0 0

0 −1 0 0 1 −2 1 1 −1 0

−1 1 −1 0 0 0 −1 1 0 0

0 0 0 0 −1 1 0 −1 1 −1

0 −1 1 0 1 −2 1 1 0 0

0 0 −1 1 0 1 −1 −2 2 −1



































, λ = −3 twice ,

λ = 0 twice , λ = −1 , λ = 1 twice , λ3 + 7λ2 + 7λ − 7 = 0,

(3, 2, 1) , A =





























































2 −1 1 −1 0 −1 2 0 −2 2 −2 0 −1 1 −1 1

2 −1 −2 2 0 −2 1 1 −1 1 0 1 −3 1 −2 1

2 −1 0 1 2 0 0 1 −2 0 −3 1 1 −1 0 3

1 1 0 1 0 1 0 1 −1 0 −2 1 −1 0 −1 3

0 0 2 −1 2 −1 1 1 −1 0 −3 0 0 0 0 2

0 0 1 1 0 0 −1 2 −1 0 −1 0 0 0 0 2

2 −1 −1 0 1 −1 3 1 −1 1 −2 1 −2 0 −2 3

1 1 −1 0 1 1 0 2 0 −1 −2 2 0 −1 −1 2

1 −1 0 0 0 0 0 0 −2 2 0 0 0 0 1 0

1 0 −1 1 −1 0 0 0 1 0 0 2 −1 0 0 0

0 0 1 −1 0 0 0 0 0 1 −3 0 1 0 0 1

0 0 1 0 −1 1 −1 0 0 1 0 −1 1 1 2 0

1 −1 0 1 0 −1 0 0 −1 0 0 1 −1 1 0 1

1 0 0 1 0 1 −1 0 −1 −1 0 1 2 0 2 1

0 0 0 0 −1 0 0 −1 1 0 1 1 0 1 0 −1

0 0 1 0 −1 1 0 −1 −1 0 2 −1 0 2 2 −2





























































,

λ = 3 twice, λ = −3 twice, λ = 1 three times, λ = −1 three times, λ3 − λ2 − 17λ + 25 = 0,

λ3 + λ2 − 17λ − 25 = 0.

To make easier the comparison with eigenvalues already evaluated, [8, 4, 9], we remark

that the 3 roots of λ3−7λ2 +7λ+7 = 0 are λ = 3−4 cos[(2p+1)π/7] with p = 0, 1, 2. This

is easily proved by extracting the real part of the identity
∑6

k=0 e2πik/7 = 0 then obtaining
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n

n-1

Figure 2: A standard Young tableau of the representation (n1, 1) of Sn.

1 n

2

n-1

3

Figure 3: A standard Young tableau of the representation (2, 1n−2) of Sn.

a cubic equation for cos(π/7). The 3 roots of λ3 + 7λ2 + 7λ− 7 = 0 are the opposite of the

previous roots.

The 3 roots of the cubic equation λ3−λ2−17λ+25 = 0 are mapped into 3 eigenvalues

△2 of the Laplacian by E = 7−λ and are the roots of the equation E3−20E2+116E−200 =

0, which is quoted in table 3.4 of the reference [1]. In the same way, the roots of the equation

λ3+λ2−17λ−25 = 0 , which are opposite of the previous ones, become roots of the equation

E3 − 22E2 + 144E − 248 = 0.

C. The eigenvectors

We are interested in the eigenstates corresponding to some irreducible representation of

Sn. We generalize the method used in section 3 for the representation (3, 1) of S4, of degree

f = 3. Here we find basis vectors and eigenvectors for the two irreducible representations

of Sn, the representation (n − 1, 1) and its conjugate (2, 1n−2), both of degree f = n − 1.

Only the first one provides important sequences of eigenvectors of the dilatation oper-

ator of superconformal Yang Mills theory, after proper replacements.

The representation (n−1, 1) of the group Sn. For any representation of the permu-

tation group Sn of degree f , one obtains a matrix of order f which represents the operator

A in eq. (2.3). As the degree of the representation increases, the evaluations becomes

more cumbersome. However there are two irreducible representations which may be easily

derived for arbitrary Sn: they are of degree n − 1 and are pair-conjugate.
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The Young tableaux has n − 1 boxes in the first row and one in the second row, as

shown in figure 2.

The set of elements in Sn is partitioned in n sets aj , j = 1, 2, . . . , n. Each aj contains

(n − 1)! elements and they may be written in the form (j, n) · g with g ∈ Sn−1.

The Young projector operator Y associated to the irreducible representation of Sn

corresponding to the partition (n − 1, 1) is Y = PQ , where P is the sum of the (n − 1)!

permutations of Sn−1 and Q = e − (1, n).

We choose n basis vectors vj:

vj = (j, n) · PQ , for j = 1, 2 . . . , n − 1 , vn = e · PQ

Since
∑n

1 vj = 0 , one basis vector may be eliminated, but equations will be more neat by

keeping all n vectors.

Any permutation in Sn which multiplies from left a basis vector vj obtains a basis

vector. For example:

(j, j+1)vj = vj+1 , (j, j+1)vj+1 = vj , (1, 2, 3, . . . , n)vj = vj+1 , (n, n−1, . . . , 2, 1)vj = vj−1

The action of the operator A = (1, 2)+ (2, 3)+ (3, 4)+ · · · + (n− 1, n)+ (1, 2, . . . , n)+

(n, n − 1, . . . , 2, 1) on each basis vector is given by the system

Av1 = (n − 2)v1 + 2v2 + vn ,

Av2 = 2v1 + (n − 3)v2 + 2v3 ,

Av3 = 2v2 + (n − 3)v3 + 2v4 ,

. . . = . . . . . . ,

Avn−1 = 2vn−2 + (n − 3)vn−1 + 2vn ,

Avn = v1 + 2vn−1 + (n − 2)vn

If u =
∑n

1 αjvj is eigenvector of A , Au = λu, the set of coefficients αj is determined by

the system

(n − 2)α1 + 2α2 + αn = λα1 ,

2α1 + (n − 3)α2 + 2α3 = λα2 ,

2α2 + (n − 3)α3 + 2α4 = λα3 ,

. . . = . . . . . . ,

2αn−2 + (n − 3)αn−1 + 2αn = λαn−1 ,

α1 + 2αn−1 + (n − 2)αn = λαn

The n−1 eigenvectors are found by solving linear recurrence relations. They form two

sequences:

λk = n − 3 + 4 cos 2kπ/(n + 1) , u(k) =
n
∑

j=1

sin

(

2kπj

n + 1

)

vj ,

k = 1, 2, . . . , kmax , kmax < (n + 1)/2 , and
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λk = n − 3 + 4 cos 2kπ/n , u(k) =

n
∑

j=1

cos

(

kπ(2j − 1)

n

)

vj ,

k = 1, 2, . . . , kmax , kmax < n/2. (C.1)

Since the group Sn is associated with △0 = n+1, the two sets of eigenvalues translate

into two sets for the one loop contribution to the dilatation dimension:

△2 = 8 sin2 πk

n + 1
, k = 1, 2, . . . , kmax , kmax < (n + 1)/2 , and

△2 = 8 sin2 πk

n
, k = 1, 2, . . . , kmax , kmax < n/2 .

We rewrite the basis vectors and the eigenvectors in term of traces of products of

matrix fields by a straightforward generalization of the procedure leading from the basis

vectors (3.1) to their form (3.2)

v1 =
∑

p∈Sn−1

tr

(

φ1φn+1φ2φ3 · · ·φn − φ1φ2φ3φ4 · · ·φn+1

)

,

v2 =
∑

p∈Sn−1

tr

(

φ1φ2φn+1φ3 · · ·φn − φ1φ3φ2φ4φ5 · · ·φn+1

)

v3 =
∑

p∈Sn−1

tr

(

φ1φ2φ3φn+1φ4 · · ·φn − φ1φ3φ4φ2φ5 · · ·φn+1

)

· · · = · · · · · ·
vn =

∑

p∈Sn−1

tr

(

φ1φ2φ3 · · ·φnφn+1 − φ1φ3φ4φ5 · · ·φn+1φ2

)

(C.2)

where we use the compact notation of footnote 2 to indicate the elements remaining fixed

in the sum over permutations. It is useful to notice that , for every j , the states vj and

vn−j+1 are related by parity.

The representation (2, 1n−2) of Sn. Although it will turn out to be of more limited

use, we derive a set of basis vectors and the eigenvectors which correspond to the irreducible

representation conjugate to the previous one. Actually only slight changes occur in the

derivation. The Young tableau of the representation (2, 1n−2) is shown in figure 3.

We define Q the sum of all permutations of the group Sn−1 with their sign, that is (+1)

or (−1) depending on the even or odd numbers of transposition that relate the permutation

to the identity permutation.

Q =
∑

p∈Sn−1

(sign p) p

One easily finds that −Q+
∑n−1

j=1 (j, n)Q is the opposite of the sum of all the n! permutations

of the group Sn, with their sign.

We may choose a set of n basis vectors

zj = (j, n)Q (e + (1, n)) , for j = 1, 2, . . . , n − 1 , zn = −Q (e + (1, n))
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Then
∑n

1 zn = 0. and one easily obtains the action of any transposition on the basis

vectors:

(j, j + 1)(j, n)Q = (j + 1, n)(j, j + 1)Q = −(j + 1, n)Q , then

(j, j + 1)zj = −zj+1 , (j, j + 1)zj+1 = −zj

However (1, 2, . . . , n)zj = −(−1)nzj+1 and (n, . . . , 2, 1)zj = −(−1)nzj−1.

If n is even we have

Az1 = −(n − 2)z1 − 2z2 − zn ,

Az2 = −2z1 − (n − 3)z2 − 2z3 ,

Az3 = −2z2 − (n − 3)z3 − 2z4 ,

. . . = . . . . . . ,

Azn−1 = −2zn−2 − (n − 3)zn−1 − 2zn ,

Azn = −z1 − 2zn−1 − (n − 2)zn

Eigenvalues of the operator A are the opposite of the ones of the conjugate representation

and eigenvectors are the same, where zj now replaces vj, that is two sequences:

λk = 3 − n − 4 cos 2kπ/(n + 1) , u(k) =
∑n

j=1 sin
(

2kπj
n+1

)

zj , k = 1, 2, . . . , kmax , kmax <

(n + 1)/2 , and

λk = 3−n− 4 cos 2kπ/n , u(k) =
∑n

j=1 cos
(

kπ(2j−1)
n

)

zj , k = 1, 2, . . . , kmax , kmax < n/2 .

If n is odd integer, we obtain

Az1 = −(n − 2)z1 + zn ,

. . . = . . . . . . ,

Azj = −(n − 3)zj ,

. . . = . . . . . . ,

Azn = z1 − (n − 2)zn , that is

A = (3 − n)I +

























−1 0 0 0 0 . . . 1

0 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 0

1 0 0 0 . . . 0 −1

























The n eigenvalues of A are:

λ = 1 − n , λ = 3 − n , n − 1 times.

One of the degenerate eigenvalues λ = 3−n is associated to the null vector
∑n

1 zj then

the n − 1 eigenvalues of the irreducible representation, if n is odd integer, are:

λ = 1 − n , λ = 3 − n , n − 2 times.

We proceed to rewrite the basis vectors zj and the eigenvectors in term of traces of

products of matrix fields as we did for the basis vectors vj .

– 27 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
0

Q is the sum of the (n − 1)! permutations over the elements {1, 2, . . . , n − 1}. We

manifest it with the notation QSn−1
(1, 2, . . . , n−1). Furthermore (2, n)QSn−1

(1, 2, 3, . . . , n−
1) = QSn−1

(1, n, 3, . . . , n − 1)(2, n) and (2, n)(1, n) = (1, n)(1, 2). Then

z2 = QSn−1
(1, n, 3, . . . , n − 1)(2, n) − QSn−1

(1, n, 3, . . . , n − 1)(1, 2)

According to the relations in Footnote 1 we add one unit in the symbols, evaluate the

inverse of the elements and rewrite in terms of matrix fields. Some care is needed for

the sign of the permutation. We use the compact notation of footnote 2 to indicate the

elements remaining fixed in the sum over permutations. Except for a overall factor (−1)n

we find

z1 = (−1)n
∑

p∈Sn−1

(sign p) tr

(

φ1φn+1φ2φ3 · · ·φn

)

+
∑

p∈Sn−1

(sign p) tr

(

φ1φ2φ3φ4 · · ·φn+1

)

,

z2 = (−1)n+1
∑

p∈Sn−1

(sign p) tr

(

φ1φ2φn+1φ3 · · ·φn

)

−
∑

p∈Sn−1

(sign p) tr

(

φ1φ3φ2φ4φ5 · · ·φn+1

)

z3 = (−1)n
∑

p∈Sn−1

(sign p) tr

(

φ1φ2φ3φn+1φ4 · · ·φn

)

+
∑

p∈Sn−1

(sign p) tr

(

φ1φ3φ4φ2φ5 · · ·φn+1

)

· · · = · · · · · ·
zn =−

∑

p∈Sn−1

(sign p) tr

(

φ1φ2φ3 · · ·φnφn+1

)

+(−1)n+1
∑

p∈Sn−1

(sign p) tr

(

φ1φ3φ4φ5 · · · φn+1φ2

)

This irreducible representation provides eigenvalues and eigenvectors for the Super

Yang Mill theory only for small values of the main quantum number △0. For example, for

the permutation group S4, with the replacements (φ1, φ2) → Z , (φ3, φ5) → W , φ4 → Y ,

we find

z1 = tr

(

(2ZWZW − ZW 2Z − WZ2W + Z2W 2 − WZWZ)Y
)

,

z2 = tr

(

(W 2Z2 − 2Z2W 2 + WZ2W + ZW 2Z − WZWZ)Y
)

,

z3 = tr

(

(Z2W 2 − 2W 2Z2 + WZ2W + ZW 2Z − ZWZW )Y
)

,

z4 = tr

(

(2WZWZ − ZW 2Z − WZ2W + W 2Z2 − ZWZW )Y
)

One obtains one positive parity eigenstate and two negative parity eigenstates:

△0 = 5 , △2 = 6 , parity = +1

u = tr

(

(ZWZW + WZWZ)Y − 2(ZW 2Z + WZ2W )Y + (W 2Z2 + Z2W 2)Y
)

.

△0 = 5 , △2 = 8 sin2 2π

5
, parity = −1

u = (z1 − z4) sin
2π

5
+ (z2 − z3) sin

4π

5
.

△0 = 5 , △2 = 8 sin2 π

5
, parity = −1

u = (z1 − z4) sin
4π

5
+ (z3 − z2) sin

2π

5
.

However we find that replacing the set matrix fields φj with an alphabet of merely 3

letters Z,W, Y leads to vanishing basis vectors zj if the main quantum number △0 > 5.
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D. The replacements

Our final step is to replace the fields φj in the general solution (C.1) and (C.2) pertinent

to the representation (n − 1, 1) with the complex fields Z , W and Y then obtaining the

eigenvectors of the dilatation operators.

For the group Sn such eigenvalues are sums of a large number of terms, each of them

being a product of n + 1 fields φj . By replacing n1 fields with the complex field Z , n2

fields with W , n3 fields with Y , with n1 +n2 +n3 = n+1, one obtains sets of eigenvalues

for the sector tr (Zn1W n2Y n3).

The different choices of fields in the sets nj may lead to inequivalent sets of eigenvectors

for the same sector tr (Zn1W n2Y n3) as we indicated in section 4.

We turn here to the generic term in the sequences with the simplest examples:

(a) we obtain the well known sequences of eigenvectors with two impurities, [8], we may

call it the sector tr

(

Zn−1φaφb

)

(b) we obtain sequences of eigenvectors for the sectors tr

(

Zn−2W 2Y
)

.

(a) The sector tr

(

Zn−1φaφb

)

.

By the replacement of n − 1 matrix fields φj with the single complex matrix field

Z, one recovers the well known sequences of eigenvectors with two impurities. More

specifically, we identify {φ2, φ3, . . . φn} → Z, then

v1 → (n−1)!tr
(

φ1φn+1Z
n−1
)

−(n−2)!tr
(

φ1Zφ2Z
n−2+φ1Z

2φ2Z
n−3 + · · ·+φ1Z

n−1φ2

)

=

= (n − 2)!n tr

(

φ1φn+1Z
n−1
)

− (n − 2)!C ,

v2 → (n − 2)!n tr

(

φ1Zφn+1Z
n−2
)

− (n − 2)!C ,

· · · → · · · · · ·
vn → (n − 2)!n tr

(

φ1Z
n−1φn+1

)

− (n − 2)!C

where C =
∑n−1

j=0 tr

(

φ1Z
jφn+1Z

n−1−j
)

.

Since
∑n

j=1 sin 2kπj
n+1 = 0 and

∑n
j=1 cos kπ(2j−1)

n = 0 , we recover the well known

symmetric and antisymmetric sequences with two impurities

△2 = 8 sin2 kπ

n + 1
, u(k) =

n
∑

j=1

sin
2kπj

n + 1
tr

(

φ1Z
j−1φn+1Z

n−j
)

k = 1, 2, . . . , kmax , kmax <
n + 1

2
, parity = −1 (D.1)

and

△2 = 8 sin2 kπ

n
, u(k) =

n
∑

j=1

cos
kπ(2j − 1)

n
tr

(

φ1Z
j−1φn+1Z

n−j
)

k = 1, 2, . . . , kmax , kmax <
n

2
, parity = 1 (D.2)
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(b) The sector tr

(

Zn−2W 2Y
)

.

Let us now look for a new sequence of eigenstates by replacing n − 2 matrix fields

φj with the single complex matrix field Z, {φ3, φ4, . . . φn} → Z, two fields with W ,

{φ1 , φ2} → W , and the last one with Y , φn+1 → Y .

With this replacement all the basis vector would vanish if the further replacement

Y → W were made. Indeed an alternative and inequivalent replacement leading to

the same sector tr

(

Zn−1W 2Y
)

is φ1 → Y , {φ2 , φ3} → W , {φ4, . . . , φn+1} → Z.

We limit ourselves to the first, simpler, replacement.

We find

v1 =
n−2
∑

r=0

tr

(

ZrWZn−2−rWY
)

−
n−2
∑

r=0

tr

(

Zn−2−rW 2ZrY
)

,

v2 =

0
∑

r=0

tr

(

Zn−2WZrWZ−rY − ZrWZn−2WZ−rY
)

+

+

n−3
∑

r=0

tr

(

ZrWZn−3−rWZY − ZrWZWZn−3−rY
)

,

vj =

j−2
∑

r=0

tr

(

Zn−jWZrWZj−2−rY − ZrWZn−jWZj−2−rY
)

+

+

n−j−1
∑

r=0

tr

(

ZrWZn−j−1−rWZj−1Y − ZrWZj−1WZn−j−1−rY
)

,

vn−1 =
n−3
∑

r=0

tr

(

ZWZrWZn−3−rY − ZrWZWZn−3−rY
)

+

+

0
∑

r=0

tr

(

ZrWZ−rWZn−2Y − ZrWZn−2WZ−rY
)

,

vn =

n−2
∑

r=0

tr

(

WZrWZn−2−rY
)

−
n−2
∑

r=0

tr

(

Zn−2−rW 2ZrY
)

The positive parity sequences of eigenstates , if n is even , may be written

△2 = 8 sin2 kπ

n
, u(k) =(v1+vn) cos(kπ/n)+

[n/2]
∑

j=2

cos

(

kπ(2j−1)

n

)

(vj +vn−j+1)

where vj + vn−j+1 = (D.3)
j−2
∑

r=0

tr [(Zn−jWZrWZj−2−r + Zj−2−rWZrWZn−j)Y − 2ZrWZn−jWZj−2−rY ] +

+

n−j−1
∑

r=0

tr[(ZrWZn−j−1−rWZj−1+Zj−1WZn−j−1−rWZr)Y

−2ZrWZj−1WZn−j−1−rY ]

– 30 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
0

where k = 1, 2, . . . , kmax , kmax < n/2.

If n is odd integer, the above u(k) should be replaced by u(k) + cos(kπ) v(n+1)/2 .

The negative parity sequences of eigenstates may be written

△2 =8 sin2 kπ

n+1
, u(k) =(v1−vn) sin(2kπ/(n+1))+

[n/2]
∑

j=2

sin

(

2kπj

n+1

)

(vj−vn−j+1)

where vj − vn−j+1 = (D.4)
j−2
∑

r=0

tr [(Zn−jWZrWZj−2−r − Zj−2−rWZrWZn−j)Y ] +

+

n−j−1
∑

r=0

tr [(ZrWZn−j−1−rWZj−1 − Zj−1WZn−j−1−rWZr)Y ]

where k = 1, 2, . . . , kmax , kmax < (n + 1)/2.
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